SCHEME OF EXAMINATION

&

DETAILED SYLLABUS

(2nd Year)

for

BACHELOR OF TECHNOLOGY for ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

under the aegis of University School of Automation and Robotics offered at Affiliated Institutions of the University

from A.S. 2021-22 onwards

University School of Automation and Robotics

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110092

Prof. Ajay S. Singholi
Professor In-charge, USAR
Guru Gobind Singh Indraprastha University
(East Delhi Campus)
Suraimal Vihar, Delhi-110092

Programme Outcomes (PO)

- 1. Engineering Knowledge (PO01): Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. Problem Analysis (PO02): Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- 3. Design/Development of Solutions (PO03): Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct Investigations of Complex Problems (PO04): Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of theinformation to provide valid conclusions for complex problems:
 - a) that cannot be solved by straightforward application of knowledge, theories and techniques applicable to the engineering discipline as against problems given at the end of chapters in a typical textbook that can be solved using simple engineering theories and techniques;
 - b) that may not have a unique solution. For example, a design problem can be solved in many waysand lead to multiple possible solutions.
 - c) that require consideration of appropriate constraints / requirements not explicitly given in the problem statement such as cost, power requirement, durability, product life, etc.;
 - d) which need to be defined (modeled) within appropriate mathematical framework; and
 - e) that often require use of modern computational concepts and tools, for example, in the design of an antenna or a DSP filter
- 5. Modern Tool Usage (PO05): Create, select, and apply appropriate techniques, resources, and modernengineering and IT tools including prediction and modelling to complex engineering activities withan understanding of the limitations.
- 6. The Engineer and Society (PO06): Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and Sustainability (PO07): Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics (PO08): Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and Team Work (PO09): Function effectively as an individual, and as a member or leaderin diverse teams, and in multidisciplinary settings.
- 10. Communication (PO10): Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project Management and Finance (PO11): Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long Learning (PO12): Recognize the need for, and have the preparation and ability to engagein independent and lifelong learning in the broadest context technological change.

Approved by BoS of USAR: 1/08/22,

Prof. Ajay S. Singholi

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Page | 2

AC sub-committee: 29/08/22

Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Dethi Campus)

Suramal Vihar, Delhi-110092

Programme Specific Outcomes (PSO)

PSO1: Comprehend the role of artificial intelligence and data science in various domains like businesses, healthcare, expert systems, etc. for efficient data storage, analysis and visualization.

PSO2: Gain the ability to independently carry out research to solve practical problems in the field of artificial intelligence and data science.

PSO3: Recognize the latest trends in the industry and acquire the desired technical skills.

PSO4: Acquire zeal for experiential learning in the field of artificial intelligence and data science and develop an entrepreneurship mindset.

> Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Dethi Campus)

Suramal Vihar, Dehi-110092

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-committee: 29/08/22

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

		Third Semester			
Group	Paper Code	Paper	L	T/P	Credits
Theory Pap	pers				
PC	AIDS201	Data Structures	3	-	3
PC	AIDS203	Foundations of Data Science	3		3
PC	AIDS205	Digital Logic Design	3	8	3
PC	AIDS207	Principles of Artificial Intelligence	3	2	3
ES/BS	AIDS209	Probability, Statistics and Linear Algebra	4	-	4
HS/MS	AIDS211	Universal Human Values- II	3	-	3
HS/MS	AIDS213	Critical Reasoning and Systems Thinking	2	=	2
HS/MS (NUES)	AIDS215	Selected readings	1	9	₂₀ 1
Practical/V	iva-Voce	3			
PC	AIDS251	Data Structures Lab	-	2	1
PC	AIDS253	Foundations of Data Science Lab	-	2	1
PC	AIDS255	Digital Logic Design Lab	3	2	1
PC	AIDS257	Principles of Artificial Intelligence Lab	-	2	1
PC	AIDS259	Web Programming Lab	-	2	1
Total			22	10	27
9		E			

**Selected readings

In Selected readings, the students will be required to select a book (non-technical book that is not related to engineering & technology) that they want to read in the semester and explore their content critically thereby get inspired to use the assimilated knowledge from the books to shape their personalities and to enhance their life skills.

Prof. Ajay S. Singholi
Professor In-charge, USAR
Guru Gobind Singh Indraprastha University
(East Delhi Campus)
Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22,

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Approved by AC sub-committee: 29/08/22

		Fourth Semester			
Group	Paper Code	Paper	L	T/P	Credits
Theory Papers			301		
PC	AIDS202	Object Oriented Programming	3	11 4 .	3
PC	AIDS204	Database Management Systems	3	1000	3
PC	AIDS206	Software Engineering	3	ME.	3
PC	AIDS208	Computer Networks and Internet Protocol	3		3
PC	AIDS210	Fundamentals of Machine Learning	3	i =	3
ES/BS	AIDS212	Computational Methods	3	8 7 0	3
HS/MS/PC (NUES)	AIDS214	Effective Technical Writing	1		1
HS/MS (NUES)	AIDS216	Emerging Trends in Technological Industries	1	24	1
Practical/Viva-	Voce				
PC	AIDS252	Object Oriented Programming Lab	180	2	1
PC	AIDS254	Database Management Systems Lab	-	2	1
PC	AIDS256	Computer Networks and Internet Protocol Lab		2	1
PC	AIDS258	Fundamentals of Machine Learning Lab	(6)	2	1
PC	AIDS260	Practicum (Integrated Project)	-	2	1
Total			20	10	25

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Delhi Campus) Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-committee: 29/08/22

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

^{**}Practicum (PM)-This is a semester Integrated Project work included in IV semester. The practical course constitutes an integrated Project work based on the concurrently studied theory in that semester or in previous semesters.

DETAILED SYLLABUS FOR 3rd SEMESTER

Prof. Aiav S. Singholi

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Dethi Campus) Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22,

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Approved by AC sub-committee: 29/08/22

Semester: 3 rd			
Paper code: AIDS201	L	T/P	Credits
Subject: Data Structures	3	0	3

Marking Scheme

- 1. Teachers Continuous Evaluation: 25 Marks
- 2. End term Theory Examination: 75 Marks

INSTRUCTIONS TO PAPER SETTERS:

Maximum Marks: 75

- 1. There should be 9 questions in the end term examination question paper.
- 2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks.
- 3. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Everyunit should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks.
- 4. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.

5. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.

Course Ob	ojectives:
1.	To understand the basic concepts of data structures.
2.	To perform basic operations on linked list, stacks and queues.
3.	To perform sorting and searching on a given set of data items.
4.	To understand the concepts of trees, hashing, and graph theory.
Course Ou	tcomes:
CO1	Understand and identify the concepts of fundamentals of data structures and efficient access strategies for solving a computational problem.
CO2	Apply suitable data structure for solving a given problem and differentiate the usage of data structures and their applications.
CO3	Analyse the choice of data structures and their usage for sorting and searching numbers in data structures.
CO4	Create the solution for a particular problem and gain ability to provide solutions/approaches with file handling and tree structures.

Cours	se Outo						ıtcome	es (PO)	Map _l	oing	(Sc	ale 1: 1	Low, 2	Mediu	ım, 3: F	ligh)
CO/P O	PO 01		PO 03	PO 04		PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PS O1	PS O2	PSO 3	PSO 4
CO1	2	2	2	2	1	1	1	1	1	1	1	2	1	1	1	1
CO ₂	2	2	2	2	1	1	1	1	1	1 =	1	2	1	-	-:	-
CO3	2	2	2	2	1	-	_	2	-	- 11	1	2	1	-	3 0	=
CO4	2	2	2	2	1	1	-	-	-	- e	1	2	1	21	-,	8

Course Overview:

This subject gives an overview of data structure concepts including arrays, stack, queues, linked lists, trees, and graphs. Discussions shall be held of various implementations of these data structures

Prof. Ajay S. Singholf
Professor In-charge, USAR
Guru Gobind Singh Indraprastha University

Approved by BoS of USAR: 1/08/22, Approved by BoS of USAR: 1/08/22, Applicable from Batch Admitted in Academic Session 2021-22 Onwards Page | 11

in real life. This subject also examines algorithms for sorting and searching. The concepts of trees and graph-based algorithms shall be introduced.

UNIT I: [10]

Introduction- Introduction to Algorithmic Complexity, Introduction to various data structures, Arrays and Strings operations, Stacks and Queues, Operations on Stacks and Queues, Array representation of Stacks, Applications of Stacks- Recursion, Polish expression and their compilation conversion of infix expression to prefix and postfix expression, Operations of Queues, Representations of Queues Applications of Queues, Priority queues, Overview of the list, set, tuples, and dictionary data structures.

UNIT II:

Searching and Sorting- Linear Search, Binary search, Insertion Sort, Quick sort, Radix sort, Merge sort, Heap sort. Linked Lists- Singly linked lists, Representation of linked list, Operations of the Linked list such as Traversing, Insertion, and Deletion, Searching, and applications of Linked List. Concepts of Circular linked list and doubly linked list and their applications. Stacks and Queues as a linked list.

UNIT III: [10]

Trees- Basic Terminology, Binary Trees and their representation, binary search trees, various operations on Binary search trees like traversing, searching, Insertion and Deletion, Applications of Binary search Trees, Complete Binary trees, Extended binary trees. General trees, AVL trees, Threaded trees, B- trees, 2-3 trees, 2-3-4 trees, B* and B+ trees.

UNIT IV: [10]

File Structure- File Organization, Indexing & Hashing, Hash Functions, Application Dictionary-Telephone Directory. Graphs- Terminology and Representations, Graphs & Multi-graphs, Directed Graphs, Representation of graphs and their Transversal, Euler and Hamiltonian paths, Spanning trees, shortest path and Transitive Closure, Activity Networks, Topological Sort, and Critical Paths.

Text Books:

- 1. Tannenbaum. Data Structures, PHI, 2007 (Fifth Impression).
- 2. An introduction to data structures and application by Jean-Paul Tremblay & Pal G. Sorenson (McGraw Hill).

Reference Books:

- 1. Data Structures with C By Schaum Series.
- 2. R.L. Kruse, B.P. Leary, C.L. Tondo. Data structure and program design in C, PHI, 2009 (Fourth Impression).
- 3. Gilberg, R. F., & Forouzan, B. A., Data structures: A pseudocode approach with C++. Brooks/Cole Publishing, 2001.

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Delhi Campus) Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22, Applicable from Batch Admitted in Academic Session 2021-22 Onwards Page | 12

Semester: 3 rd			
Paper code: AIDS251	L	T/P	Credits
Subject: Data Structures Lab	0	2	1

Marking Scheme

- 1. Teachers Continuous Evaluation: 40 Marks
- 2. End term Examination: 60 Marks

INS	TRU	CTIO	NS T	O PA	PER	SET'	TERS	S:					Maxir	num	Mark	s: 60
1. 2. 3.	The commappe Instrexpe	practimence ar is buctors	ical ement eing can t list	list si t unde offere add ar which	er the : ed from	oe no intim the er add think	tified ation list or dition is im	by t to the f pract al exp portan	he tea office icals leriment.	acher e of the pelow, nts over	in the HO	e firs D/ Ins	titutio	n in w	the chich the	hey
Cou	rse O	bjecti	ves:													
1	l. To	teach	ı stuc	lents l	now to	anal	yse di	fferen	t type:	s of da	ata str	ucture	s.			
2	2. To	desig	gn ap	plicati	ions b	ased	on dif	ferent	types	of dat	a stru	ctures.				
Cou	rse O	utcom	ies:													
CO1	De b	sign p	progr trees,	ams u	ising a	a vari	ety of aps, gr	f data	struct B-tree	ures s es, list	uch a	s stack uples,	cs, que	eues, l	nash ta	ables,
CO2	wo	orld pr	oblei	ms eff	icient	ly.									o solve	
Cours	e Out	comes	(CO)) to Pr	ogran	nme (Outcor	nes (P	O) Ma	pping	(Scale	21: Lo	w, 2: N	/lediun	n, 3: Hi	igh)
CO/	PO		PO	PO		PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS
PO	01		03	04	05	06	07	08	09	10	11	12	01	O2_	03	04
CO1	2	2	2	2	1	-	=:	-	-	<u></u> 00	-	1	1	ä		-
CO2	2	2	2	2	1	1	1	1	1	1	,		-		_	

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Delhi Campus) Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-committee: 29/08/22

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

LIST OF EXPERIMENTS:

- 1. Perform Linear Search and Binary Search on an array.
- 2. Create a stack and perform Pop, Push, and Traverse operations on the stack using a Linear Linked list.
- 3. Create a Linear Queue using Linked List and implement different operations such as insert, delete, and display the queue elements.
- 4. Implement sparse matrices using arrays.
- 5. Implement the following sorting techniques:
 - a. Insertion sort
 - b. Merge sort
 - c. Bubble sort
 - d. Selection sort
- 6. Create a linked list with nodes having information about a student. Insert a new node at the specified position.
- 7. Create a doubly linked list with nodes having information about an employee and perform Insertion at front of doubly linked list and perform deletion at end of that doubly linked list.
- 8. Create a circular linked list having information about a college and perform Insertion at the front end and perform deletion at the end.
- 9. Create a Binary Tree and perform Tree Traversals (Preorder, Postorder, Inorder) using the concept of recursion.
- 10. Implement insertion, deletion, and display (Inorder, Preorder, Postorder) on binary search tree with the information in the tree about the details of an automobile (type, company, year of make).

CH.

Prof. Ajay S. Singholí
Professor In-charge, USAR
Guru Gobind Singh Indraprastha University
(East Delhi Campus)
Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-committee: 29/08/22

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Semester: 3 rd			
Paper code: AIDS203	L	T/P	Credits
Subject: Foundations of Data Science	3	0	3

Marking Scheme

Teachers Continuous Evaluation: 25 Marks
 End term Theory Examination: 75 Marks

INSTRUCTIONS TO PAPER SETTERS:

Maximum Marks: 75

- 1. There should be 9 questions in the end term examination question paper.
- 2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks.
- 3. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Everyunit should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks.
- 4. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.
- 5. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.

Course Objectives:

- 1. To analyse different types of data using Python.
- 2. To prepare data for analysis and perform simple statistical analysis.
- 3. To create meaningful data visualizations and predict future trends from data.

Course Outcomes:

- CO1 Understand and identify the basic concepts of data science for performing data analysis.
- CO2 Apply & perform pre-processing steps along with data visualization to get insights from data.
- CO3 Analyse and apply different modules of data science to evaluate mathematical, and scientific problems of data analysis.
- CO4 Develop the model for data analysis and evaluate the model's performance to optimize business decisions and create competitive advantage with data analytics.

Course Outcomes (CO) to Programme Outcomes (PO) Mapping (Scale 1: Low, 2: Medium, 3: High)

CO/ PO	PO 01			PO 04			PO 07		PO 09					PS O2	PS O3	PS O4
CO1	3	3	3	3	1	-	-	-	-	-	1	2	3	1	1	1
CO2	2	3	3	3	3	1	1	1	1	1	1	2	3	3	1	1
CO3	2	3	3	3	1	-	-	-	-	-	2	3	3	3	1	1
CO4	3	3	3	3	1	1	1	1	1	1	2	3	3	2	3	3

Prof. Ajay S. Singholi
Professor In-charge, USAR
Guru Gobind Singh Indraprastha University
(East Delhi Campus)
Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-committee: 29/08/22

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Course Overview:

Foundations of Data Science is a blend of statistical mathematics, data analysis tools and visualization, domain knowledge representation, tools and algorithms and computer science applications. The hidden insights or patterns are identified and analysed to form a decision.

UNIT I: [8]

Introduction to data science, applications of data science, data scientist roles and responsibilities, skills needed to become a data scientist. Need of Python for data analysis, Introduction to Data Understanding and Pre-processing, domain knowledge, Understanding structured and unstructured data. Creation of synthetic dataset in MS Excel.

UNIT II: [12]

Basics of Python programming: Variables, printing values, if condition, arithmetic operations, loops. Data Analysis process, Dataset generation, Importing Dataset: Importing and Exporting Data, Basic Insights from Datasets, Cleaning and Preparing the Data: Identify and Handle Missing Values.

UNIT III: [12]

Basics of essential Python libraries: Introduction to NumPy, Pandas, Matplotlib, SciPy. Data Processing, Data Visualization, Basic Visualization Tools, Specialized Visualization Tools, Seaborn Creating and Plotting Maps.

UNIT IV: [8]

Mathematical and scientific applications for data Analysis, Basics of Supervised and Unsupervised Learning. Decision Making. Trend & predictive mining using Python, Recommender systems.

Text Books:

- 1. Wes Mckinney. Python for Data Analysis, First edition, Publisher O'Reilly Media.
- 2. Foundational Python for Data Science, 1st edition, Kennedy Behrman, Pearson Publication.
- 3. Data analytics using Python, Bharti Motwani, Wiley Publication.

Reference Books:

- 1. Allen Downey, Jeffrey Elkner, Chris Meyers, Learning with Python, Dreamtech Press.
- 2. Reema Thareja. Python Programming using Problem Solving approach, Oxford University press.

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Dethi Campus) Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22, Approved by AC sub-committee: 29/08/22 Page | 16

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Semester: 3 rd			
Paper code: AIDS253	L	T/P	Credits
Subject: Foundations of Data Science Lab	0	2	1

Marking Scheme

- 1. Teachers Continuous Evaluation: 40 Marks
- 2. End term Examination: 60 Marks

INSTRUCTIONS TO PAPER SETTERS:

Maximum Marks: 60

- 1. This is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under the intimation to the office of the HOD/ Institution in which the appear is being offered from the list of practicals below.
- 3. Instructors can add any other additional experiments over and above the mentioned in the experiment list which they think is important.
- 4. Atleast 8 experiments must be performed by the students.

Course Objectives:

- 1. To analyse different types of data using Python.
- 2. To perform statistical analysis and create meaningful data insights.

Course Outcomes:

- CO1 Apply data science principles to identify meaningful solutions to actual problems.
- CO2 Analyse and create programs based on statistical analysis using different libraries of Python programming language.

Course Outcomes (CO) to Programme Outcomes (PO) Mapping (Scale 1: Low, 2: Medium, 3: High)

CO/ PO							PO 07		PO 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
CO1	3	3	3	3	3	1	1	2	1	1	1	2	3	2	2	2
CO2	3	3	3	3	3	1	1	2	1	1	1	2	3	2	2	2

LIST OF EXPERIMENTS:

- 1. Introduction and installation of Python and Python IDEs for data science (Spyder-Anaconda, Jupyter Notebook etc.)
- 2. Design a Python program to generate and print a list except for the first 5 elements, where the values are squares of numbers between 1 and 30.
- 3. Design a Python program to understand the working of loops.
- 4. Design a Python function to find the Max of three numbers.
- 5. Design a Python program for creating a random story generator
- 6. Create a synthetic dataset (.csv/.xlsx) to work upon and design a Python program to read and print that data.

 Prof. Ajay S. Singhoil
- 7. Design a Python program using NumPy library functions.

Prof. Ajay S. Singhoil
Professor In-charge, USAR
Guru Gobind Singh Indraprastha University
(East Dethi Campus)
Suraimal Vihar, Dethi-110092

Approved by BoS of USAR : 1/08/22, Approved by AC sub-committee : 29/08/22 Applicable from Batch Admitted in Academic Session 2021-22 Onwards Page | 17

- 8. Perform Statistics and Data Visualization in python.
- 9. Design a Python program to implement Linear Regression
- 10. Design a Python program to create a recommender system

Faculties should also motivate students to make a project on the topics taught in theory and lab.

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Dethi Campus) Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22, Approved by AC sub-committee: 29/08/22 Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Semester: 3 rd			
Paper code: AIDS205	L	T/P	Credits
Subject: Digital Logic Design	3	0	3

Marking Scheme

1. Teachers Continuous Evaluation: 25 Marks 2. End term Theory Examination: 75 Marks

INSTRUCTIONS TO PAPER SETTERS:

					LI LZIX								MAXIII.	iuiii iv	iains	. /3
1.	Then	e sho	uld b	e 9 qu	estion	ıs in tl	he enc	l term	exam	inatio	n ques	tion p	aper			
2.	Que	stion l	No. 1	shou	ld be	comp	ulsory	and o	cover	the en	tire sy	'llabus	s. This	quest	ion sh	ould
	have	objec	ctive	or sho	rt ans	wer ty	ype qu	iestioi	ns. It s	hould	be of	15 ma	ırks.			
3.	Apai	rt fror	n Qu	iestior	ı No.	1, th	e rest	of th	e pape	er sha	ll con	sist o	f four	units	as pe	r the
	sylla	bus. E	Every	unit s	hould	have	two q	uestio	ns. Ho	weve	r, stud	ents n	nay be	asked	to att	empt
	only	1 que	stion	from	each	unit. l	Each o	questic	on sho	uld be	15 m	arks.	,			T.
4.	The	questi	ons a	ire to l	e fran	ned k	eeping	in vi	ew the	learn	ing ou	tcome	es of co	ourse/i	naner.	The
	stand	lard/	level	of th	ie que	estion	s to l	oe ask	ed sh	ould	be at	the le	evel o	f the	presci	ribed
	textb	ooks.			-										I	
5.	The	The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if														
	requ	required.														
Cou	rse O	bjecti	ives:													
1.	T	o teac	h var	ious r	umbe	r syst	ems, l	oinary	codes	and t	heir a	pplica	tions.			
2.	T	o fam	iliari	ze the	stude	ents w	vith th	e imp	ortano	ce of e	error c	letecti	on and	d erro	r corre	ection
	co	To familiarize the students with the importance of error detection and error correction codes.														
3.	T	To inculcate concepts of K-MAP to simplify a Boolean expression.														
4.	a boolean expression.															
Cou	urse Outcomes:															
CO1																
	sy	stems	S		·			•							02 •	-8.00
CO ₂	l Id	lentify	the	impor	tance	of car	nonica	al forr	ns in t	he mi	nimiz	ation o	or othe	er onti	mizati	on of
	В	ooleai	n fori	nulas	in ger	neral a	and di	gital c	ircuits	S.			01 0011	и ори	1111240	011 01
CO ₃	A	pply a	and e	valuat	e circ	uits o	f min	imizir	ng algo	orithm	s (Bo	olean	algebr	a Kar	naugh	man
	01	tabul	ation	meth	od).				-66	J. 1 (1111)	5 (20	orcan	uigeoi	u, Itai	maugi	тпар
CO ₄						edure	s of c	ombin	ationa	l and	seque	ntial c	ircuits	-		
COS	D	esign	and i	mpler	nent re	eal wo	orld pr	oiects	invol	ving c	ombir	nation	al and	seguei	ntial l	oics
Cours													w, 2: N			
CO/	PO		PO	PO		PO	PO	PO	PO	PO	РО	PO	PS	PS	PS	PS
PO	01	02	03	04	05	06	07	08	09	10	11	12	01	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	03	04
CO1	2	2	2	2	1	-	-	- 1	-	_0	-	1	1	-	-	1
CO2	2	2	2	2	1	-	-	-	-		-	1	1	-	_	-
CO3	2	2	2	2	1	2	-	-	-	-	-	1	1	-3 X	-	-
CO4		2	2	2	1	-	er «		4		-	1	1	- 7		-
CO5	2	2	2	2	1	1	1	1	1	1	1	1	1 .	1	1	1
			_										Prof.	vay S.	Singt	الما

Professor In-charge, USAR Guru Gobind Singh Indraprastha University

Maximum Marks: 75

(East Delhi Campus)

Approved by AC sub-command than 900 12 20092

Approved by BoS of USAR: 1/08/22, Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Course Overview:

The course addresses the concepts of digital systems logic design, and techniques of designing digital systems. The course teaches the fundamentals of digital systems applying the logic design and development techniques. This course forms the basis for the study of advanced subjects like Computer Organization and Architecture, Microprocessor through Interfacing, VLSI Designing.

UNIT I: [10]

Digital systems, binary numbers, number base conversions, octal and hexadecimal numbers, complements, signed binary numbers, binary codes, error detection and error correction codes. Boolean Algebra and Logic Gates: Basic definitions, axiomatic definition of Boolean algebra, basic theorems and properties of Boolean algebra, Boolean functions, canonical and standard forms, other logic operations, digital logic gates.

UNIT II:

GATE level minimization, Logic gates and Logic families, The K-map method, four-variable map, five-variable map, product of sums simplification, don't-care conditions, NAND and NOR implementation, determination and selection of Prime Implicants, Essential and Nonessential prime Implicants.

UNIT III:

Combinational logic and their Design procedure, Binary Adder, Binary Subtractor, Binary Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers, and Demultiplexers. Memories such as ROM, RAM, EPROM.

UNIT IV: [12]

Sequential logic and circuits, latches, flip-flops, analysis of clocked sequential circuits, State reduction and assignment, design procedure. REGISTERS AND COUNTERS: Registers, shift registers, ripple counters, synchronous counters, counters with unused states, ring counter, Johnson counter. Random access memory, memory decoding, error detection and correction, read only memory, programmable logic array, programmable array logic, sequential programmable devices. A/D and D/A converters.

Text Books:

- 1. M. Morris Mano, Michael D. Ciletti (2008), Digital Design, 4th edition, Pearson Education Inc, India.
- 2. Donald D. Givone (2002), Digital Principles and Design, Tata McGraw Hill, India.

Reference Books:

1. C. V. S. Rao (2009), Switching and Logic Design, 3rd Edition, Pearson Education, India.

2. Roth (2004), Fundamentals of Logic Design, 5th Edition, Thomson, India.

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Dethi Campus) Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22, Applicable from Batch Admitted in Academic Session 2021-22 Onwards Page | 20

Semester: 3 rd			
Paper code: AIDS255	L	T/P	Credits
Subject: Digital Logic Design Lab	0	2	1

Marking Scheme

- 1. Teachers Continuous Evaluation: 40 Marks
- 2. End term Examination: 60 Marks

INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: 60 1. This is the practical component of the corresponding theory paper. 2. The practical list shall be notified by the teacher in the first week of the class commencement under the intimation to the office of the HOD/ Institution in which the appear is being offered from the list of practicals below. 3. Instructors can add any other additional experiments over and above the mentioned in the experiment list which they think is important. 4. At least 8 experiments must be performed by the students. Course Objectives: 1. To familiarize with the understanding of various aspects of designing real life applications through digital logic. 2. Design and analysis of the digital circuits and systems. **Course Outcomes:** Design an experiment to validate through hypothesis, a Boolean logic gates, truth table CO₁ and circuit simulation. Create circuits to solve real life problems via digital logic design. CO2

Cours	Course Outcomes (CO) to Programme Outcomes (PO) Mapping (Scale 1: Low, 2: Medium, 3: High)															
CO/ PO	PO 01	PO 02	PO 03	PO 04	PO 05	PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
CO1	2	2	2	2	1	-	.	-	-	-	-	1	-	-	-	-
CO2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1

Prof. Ajay S. Singholi
Professor In-charge, USAR
Guru Gobind Singh Indraprastha University
(East Delhi Campus)
Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-committee: 29/08/22

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

LIST OF EXPERIMENTS:

- 1. a) Introduction to Digital Logic Trainer kits and their function.
 - b) Verify the truth table of Basic logic gates using their ICs.
 - c) Realize logic functions of NOT, AND, OR, EX-OR, EX-NOR with the help of universal gates-NAND and NOR Gates.
- 2. a) Verify De-Morgan's theorem for two variables using basic gates.
 - b) Realize Sum of Product (SOP) and Product of sum (POS) expressions using universal gates.
- 3. Realize Binary to Gray & Gray to Binary code converter and their truth table.
- 4. Design and test the Adder circuit.
 - a) Half Adder
 - b) Full Adder
 - c) Parallel Adder using 7483
- 5. Design and test the Subtractor circuit.
 - a) Half Subtractor
 - b) Full subtractor
- 6. Design and test the Multiplexer circuit.
 - a) 8:1 Multiplexer using IC 74151
 - b) 1:8 Demultiplexer circuit using IC 74138
- 7. Verify and test the Counter circuit.
 - a) BCD Counter using ICs 7493
 - b) Ring counter using 7495
 - c) Johnson Ring Counter using 7495
- 8. Design and implement Comparator circuit.
 - a) 1 bit comparator
 - b) 4 bit magnitude Comparator using 7485
- 9. Design and implement Encoder circuit.
 - a) Decimal to BCD Encoder using IC 74147
 - b) Octal to Binary Encoder using IC 74148
- 10. Verify 2:4 Decoder using seven segment decoder and using ICs 7447.
- 11. Investigate the operation of various Flip-Flops using IC 7400, 7410.
 - a) SR & Clocked Flip flop
 - b) D flip flop
 - c) T flip flop
 - d) JK flip flop
- 12. Realize Shift Register using ICs 7495.
 - a) SISO (Serial in Serial out)
 - b) SIPO (Serial in Parallel out)
 - c) PIPO (Parallel in Parallel out)
 - d) PISO (Parallel in Serial out)

Prof. Ajay S. Singholi

Prof. Ajay S. Singholi
Professor In-charge, USAR
Guru Gobind Singh Indraprastha University
(East Dethi Campus)
Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22, Approved by AC sub-committee: 29/08/22
Applicable from Batch Admitted in Academic Session 2021-22 Onwards Page | 22

Cours	se Out	come	s (CO) to P	rograi	mme (Outco	mes (P	O) Ma	apping	(Scal	e 1: Lo	w, 2: l	Mediur	n, 3: H	igh)
CO/ PO	PO 01	PO 02	PO 03	PO 04	PO 05	PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS 03	PS O4
C01	2	3	3	3	1	-	-	3	-	-	1	2	3	2	1	2
CO2	2	3	3	3	1	1	1	1	1	1	1	1	3	2	1	2
CO3		3	3	3	1	.	2	-(-	<u>=</u>	2	2	3	2	1	2
CO ₄	2	3	3	3	1	1	1	1	1	1	2	3	3	3	1	2

Course Overview:

Principles of artificial Intelligence is the simulation of intelligence process by computer systems. It gives understanding of the main abstractions and reasoning techniques used in artificial intelligence including understand of AI, reasoning by machines, planning techniques, and basic machine learning methods.

UNIT I: [10]

Introduction to AI, History of Artificial Intelligence, Applications of AI in the real world (Gaming, Computer Vision, Expert Systems, Natural Language Processing, Robotics & others). AI techniques, Problem Solving: Production Systems, State Space Search, Depth First Search, Breadth First Search, Heuristic Search, Hill Climbing, Best First Search, best-first search, A*, Problem Reduction, AO*, Constraint Satisfaction, Means-End Analysis.

UNIT II: [8]

Knowledge representation, Knowledge representation using Predicate logic, Propositional logic, Inferences, First-Order Logic, Inferences, Unification, Resolution, Natural Deduction, Procedural versus declarative knowledge, logic programming, forward versus backward reasoning.

UNIT III: [10]

Reasoning, Introduction to Uncertainty, Bayesian Theory, Bayesian Network, Dempster-Shafer Theory. Overview of Planning and its Components. Overview of Learning and basic Techniques. Introduction of Fuzzy Reasoning and Neural Networks.

UNIT IV: [12]

Game Playing and Current Trends in AI, MinMax search procedure, Alpha-Beta Cutoffs, Game Development using AI, Applications of AI, Emerging Trends in AI Research in various domains.

Text Books:

1. Rich and Knight. Artificial Intelligence, Tata McGraw Hill, 1992.

2. S. Russel and P. Norvig. Artificial Intelligence – A Modern Approach, Second Edition, Pearson Edu.

Reference Books:

- 1. Kheemani, Deepak, A First Course in Artificial Intelligence, McGraw Hill Education, 1 Edition, 2017
- 2. Artificial Intelligence: foundations of computational agents, Cambridge University Press, 2017.
- 3. Poole, David L., and Alan K. Mackworth. Artificial Intelligence: foundations of computational agents. Cambridge University Press, 2010.
- 4. Luger, G.F. Artificial Intelligence -Structures and Strategies for Complex Problem Solving, 6th edition, Pearson, 2008.

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University

Approved by BoS of USAR: 1/08/22, Approved by AC sub-commented Detailed Page 24

Approved by AC sub-commented Detailed Page 24

- 8. Write a program to solve Monkey Banana Problem using Prolog.
- 9. Write a program to solve Water Jug Problem using Prolog.
- 10. Write a program to solve 8 Puzzle Problem using Prolog
- 11. Write a program to solve Tower of Hanoi Problem using Prolog.
- 12. Write a program for medical diagnosis using Prolog.

Prof. Ajay S. Singholi
Professor In-charge, USAR
Guru Gobind Singh Indraprastha University
(East Delhi Campus)

Course Overview:

Probability, statistics and linear algebra gives and allows to access and examine the certainty of outcomes of a study or experiment that is executed. The course also addresses the statistics to gather, review, analyse and draw conclusion from raw data, as well as quantified mathematical models to understand machine learning algorithms.

UNIT I: [14]

Probability - Probability spaces, conditional probability, independence; Discrete random variables, continuous random variables and their properties, distribution functions and densities, exponential and gamma densities. Independent random variables, the multinomial distribution, Chebyshev's Inequality, Bayes' rule.

UNIT II: [12]

Basic Statistics- Measures of Central tendency: Moments, skewness and Kurtosis - Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions, Correlation and regression – Rank correlation.

UNIT III:

Applied Statistics- Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance- large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations.

UNIT IV: [12]

Linear Algebra- Cramer's rule, Singular Value decomposition, Euclidian vector spaces, Projection. Hermitian and Unitary Matrix, Gram -Schmidt orthogonalization, LU- decomposition.

Text Books:

- 1. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003.
- 2. S. Ross, A First Course in Probability, 6th Ed., Pearson Education India, 2002.
- 3. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968.

Reference Books:

- 1. N.P. Bali and Manish Goyal, A textbook of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2000.
- 3. Veerarajan T. Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi, 2010.
- 4. Mathematics For Machine Learning-Marc Peter Deisenroth, A. Aldo Faisal, Cheng soon ong.

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Delhi Campus) Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-committee: 29/08/22

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Semester: 4 th			
Paper code: AIDS254	L	T/P	Credits
Subject: Database Management System Lab	0	2	1

Marking Scheme

1. Teachers Continuous Evaluation: 40 Marks

2. End term Examination: 60 Marks

INS	INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: 60															
1.	is the product of the corresponding theory paper.															
2.	The	pract	ical	list s	hall ł	e no	tified	by t	he te	acher	in th	e firs	t wee	ek of	the c	lass
	com	mence	men	t unde	er the	intim	ation	to the	e offic	e of t	he HC	D/ In	stituti	on in	which	the
	appe	ar is t	eing	offere	ed fro	m the	list o	f pract	ticals l	below						
3.	Instr	uctors	can	add a	ny oth	er ad	dition	al exp	erime	nts ov	er and	abov	e the r	nentio	ned in	the
	3. Instructors can add any other additional experiments over and above the mentioned in the experiment list which they think is important.															
4.	4. At least 8 experiments must be performed by the students.															
Cou	Course Objectives:															
1.	To create a database as per the proper rules.															
2.	To the distance of the proper rules.															
Cou	Course Outcomes:															
CO	Ap	ply D	oly f	ase m	nanage	ement	princ	ciples	to fe	tch ar	nd ma	intain	detai	ls effi	ciently	and
CO2									l worl				-,-			_
		ation	ond:	ntoroc	SQL,	Mon	RODB	comr	nanas	ana c	constr	act qu	eries	using	in dat	abase
Cour							2 4	/T	0) 75		(0 1					
Cours	se Oui	comes	<i>(</i> CO) to P	rograi	mme (Jutco	mes (F	'O) Ma	apping	g (Scal	e 1: Lo	ow, 2: 1	Mediur	n, 3: H	igh)
CO/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	IPS	PS
PO	01		03	04		06	07	08	09	10	11	12	01	02	03	$\begin{vmatrix} r_5 \\ 04 \end{vmatrix}$
CO1	2	2	2	2		 	1								-	
COI	2	3	3	2	2	1	I	1	1	1	l	2	1	1	1	1
CO2	2 3 3 2 3 2 - 3 1															

LIST OF EXPERIMENTS:

- 1. Study and practice various database management systems like MySQL/Oracle/PostgreSQL/SQL Server and others.
- 2. Implement simple queries of DDL and DML.
- 3. Implement basic queries to Create, Insert, Update, Delete and Select Statements for two different scenarios (For instance: Bank, College etc.)

4. Implement queries including various functions- mathematical, string, date etc

Prof. Alay S. Singholi Professor In-charge, USAR

Approved by BoS of USAR : 1/08/22, Approved by Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Approved by AC sub-committees: Deliverages and University of the Campus)

SuraimaPASA, balai-110092

- 5. Implement queries including Sorting, Grouping and Subqueries-like any, all, exists, not exists.
- 6. Implement queries including various Set operations (Union, Intersection, Except etc.).
- 7. Implement various JOIN operations- (Inner, Outer).
- 8. Write a PL/SQL program using FOR loop to insert ten rows into a database table.
- 9. Given the table EMPLOYEE (Emp No, Name, Salary, Designation, DeptID), write a cursor to select the five highest-paid employees from the table.
- **10.** Illustrate how you can embed PL/SQL in a high-level host language such as C/Java And demonstrates how a banking debit transaction might be done.

The students should be motivated to make a project using MySql and MongoDb.

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Delhi Campus) Surajmal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-committee: 29/08/22

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Semester: 4 th			
Paper code: AIDS206	L	T/P	Credits
Subject: Software Engineering	3	0	3

Marking Scheme

Teachers Continuous Evaluation: 25 Marks
 End term Theory Examination: 50 Marks
 End term Practical Examination: 25 Marks

INSTRUCTIONS TO PAPER SETTERS:

Maximum Marks: 50

- 1. There should be 9 questions in the end term examination question paper
- 2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks.
- 3. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Everyunit should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks.
- 4. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.
- 5. Instructors can add any other additional experiments over and above the mentioned in the experiment list which they think is important.
- 6. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.

Course Objectives:

- 1. To familiarize students with basic Software engineering methods and practices and their applications.
- 2. To explain layered technology in software engineering
- 3. To teach software metrics and software risks.
- 4. To familiarize students with software requirements and the SRS documents.
- 5. To facilitate students in software design.

Course Outcomes:

- CO1 | Understand software systems of the real world and their life cycle.
- CO2 Design the software solutions per the SRS requirement and proper tools.
- CO3 | Estimate software development cost and its maintenance.
- CO4 Deploy various testing techniques to test software.

Course Outcomes (CO) to Programme Outcomes (PO) Mapping (Scale 1: Low, 2: Medium, 3: High)

CO/ PO	PO 01		PO 03	PO 04		PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
CO1	3	2	2	2	3	1	1	1	1	1	1	2	1	1	-0	1
CO ₂	2	2	2	2	3	-	-	u u	-	-	1	2	-	-	1	-
CO3	2	2	2	2	3	-	-	_		-	1	2	-	÷	1	-
CO4	3	2	2	2	3	-	-	-	-	-	1	2	-/	11	1	

Course Overview:

Prof. Ajay S. Singholi Professor In-charge, USAR

Approved by BoS of USAR: 1/08/22, Approved by AC sate Continue (East Design 29/08/22 ha University
Applicable from Batch Admitted in Academic Session 2021-22 Onwards

(East Design 29/08/22 ha University
Suraimal Vihar, Delhi-110092

Software Engineering comprises the core principles consistent in software construction and maintenance: fundamental software processes and life cycles, mathematical foundations of software engineering, requirements analysis, software engineering methodologies, and standard notations, principles of software architecture and re-use, software quality frameworks and validation, software development, and maintenance environments and tools. It's an introduction to the object-oriented software development process and design.

UNIT I:

Introduction to Software- Nature of Software, Introduction to Software Engineering, Software Engineering Layers, Software Myths, The Software Processes, Project, Product, Process Models: A Generic Process Model, Waterfall Model, Incremental Process Models, Evolutionary Process Models, Spiral Model. COCOMO Model. UML diagrams and DFDs

UNIT II: [10]

Requirements Engineering- Functional and Non-Functional Requirements, The Software Requirements Document, Requirements Specification, Requirements Engineering, Requirements Elicitation and Analysis, Requirement Validation, Requirement Management, DFD, Data Dictionary. Introduction to ER diagrams

UNIT III: [10]

Software Design- Design concepts and principles - Abstraction - Refinement - Modularity Cohesion coupling, Architectural design, Detailed Design Transaction Transformation, Refactoring of designs, Object-oriented Design User-Interface Design. Software Testing: White-Box Testing, Black Box Testing. Stress Testing. Alpha, Beta, and Acceptance Testing. Debugging.

UNIT IV: [12]

Software Maintenance and Management- Software Maintenance, Types of Maintenance, Software Configuration Management, Overview of RE-engineering Reverse Engineering, Reliability: Failure and Faults, Reliability Models. Quality and Risk Management: Product Metrics, Software Measurements, Metrics for Software Quality, Risk Management: Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM). Overview Of Quality Management. CMM, ISO 9000, and Six Sigma.

> Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Dethi Campus)

Approved by BoS of USAR: 1/08/22,

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Page | 52

[8]

Practical Component:

Unit 1: Introduction to UML diagrams and DFDs (using Edraw Max/Adobe Spark). Introduction to the basic functioning of SE tools for model visualization (Tableau Public /Gallery)

Unit 2: Introduction to ER diagrams (Lucidchart)

Unit 3: Debugging Tools: Visual Studio Debugger, GNU Debugger

Unit 4: Project Management Tools: HubSpot Project Management Tool; Toggl Plan. Requirements Analysis Tools; Testing Tools: Loadium, Qase, RedLine 13

Faculty can teach the above-mentioned tools & techniques (through unit 1 to unit 4) to students through the following experiments:

- a. Create a UML diagram using Edraw Max/Adobe Spark for library management system
- b. Create an ER diagram using Lucidchart for student management system
- c. Explore debugging of an existing system using Visual Studio Debugger/GNU Debugger
- d. Create a detailed requirement analysis report for a software project and perform testing using Loadium/Qase/RedLine 13

Text Books:

- 1. Roger S. Pressman (2011), Software Engineering, A Practitioner's Approach, 7th edition, McGraw Hill International Edition, New Delhi.
- 2. Sommerville (2001), Software Engineering, 9th edition, Pearson Education, India.

References:

- 1. K. K. Aggarwal, Yogesh Singh (2007), Software Engineering, 3rd edition, New Age International Publishers, India.
- 2. Lames F. Peters, Witold Pedrycz (2000), Software Engineering an Engineering approach, John Wiley & Sons, New Delhi, India.
- 3. Shely Cashman Rosenblatt (2006), Systems Analysis and Design, 6th edition, Thomson Publications, India

CH

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Delhi Campus) Surejmal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-committee: 29/08/22

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Semester: 4 th			
Paper code: AIDS208	L	T/P	Credits
Subject: Computer Networks and Internet Protocol	3	0	3

Marking Scheme

Teachers Continuous Evaluation: 25 Marks
 End term Theory Examination: 75 Marks

INSTRUCTIONS TO PAPER SETTERS:

Maximum Marks:75

- 1. There should be 9 questions in the end term examination question paper
- 2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks.
- 3. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Everyunit should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks.
- 4. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.
- 5. Instructors can add any other additional experiments over and above the mentioned in the experiment list which they think is important.
- 6. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.

Course Objectives:

- 1. To implement a simple LAN with hubs, bridges and switches.
- 2. To describe how computer networks are organized with the concept of layered approach.
- 3. To demonstrate internet protocols using the modern tools of computer networks.
- 4. To design and implement a network for an organization.

Course Outcomes:

- CO1 Understand concepts of computer networks and various Internet protocols.
- CO2 Analyse given data segments/packets/frames and protocols in various layers of computer networks.
- CO3 Design real networks using state of art components using simulation tools.
- CO4: Design and implement a network for an organization.

Course Outcomes (CO) to Programme Outcomes (PO) Mapping (Scale 1: Low, 2: Medium, 3: High)

CO/ PO	PO 01	PO 02	PO 03	PO 04		PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
CO1	2	2	2	2	2	2 ²	<u>=</u>)	6	-	-	ê	1		-	-	•
CO2	2	2	2	2	2	Ē.	-	-	-:		-	-	-	-	-	-
CO3	2	2	2	2	3	-				-	-	-	-	-	1	1
CO4	2	2	2	2	2	1	1	1	1	1	1	2	X	1	3	1

Prot. Ajay S. Singholi
Professor In-charge, USAR
Guru Gobind Singh Indraprastha University
(East Delhi Campus)

Approved by AC sub-committee: 29/08/22

Approved by BoS of USAR: 1/08/22, Approved by Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Course Overview:

This course deals with fundamentals of computer networks and Internet protocols. It addresses various network models, Data link protocols, network layer protocols and implementation of computer network models and OSI layers. The course also deals with Transport layer protocols. The main emphasis of this course is on the organization and management of networks and internet protocols.

UNIT I: [8]

Introduction to Layered Network Architecture- What are computer networks, Layered models for networking, different types of communication models, ISO-OSI Model, TCP/IP.

UNIT II: [10]

Data Link Protocols- Stop and Wait protocols, Noise-free and Noisy Channels, Performance and Efficiency, Sliding Window protocols, MAC Sublayer: The Channel Allocation Problem, Carrier Sense Multiple Access Protocols, Collision Free Protocols, FDDI protocol. IEEE Standard 802.3 & 802. 11 for LANs and WLANs

UNIT III: [12]

Network Layer protocols- Design Issues: Virtual Circuits and Datagrams, Routing Algorithms, Optimality principle, shortest path routing Algorithms, Flooding and Broadcasting, Distance Vector Routing, Link State Routing, Flow-Based Routing, Multicast Routing; Flow and Congestion Control.

UNIT IV: [10]

Transport Layer Protocols- Design Issues, Quality of Services. The Internet Transport Protocols. IPV4 vs IPV6. Session Layer protocol: Dialog Management, Synchronization, Connection Establishment. Quality of service, security management, Firewalls. Application layer protocols: HTTP, SMTP, FTP, SNMP, etc.

Text Books:

- 1. Tanenbaum, S., Computer Networks, Fifth Edition, Prentice Hall, India, 2013.
- 2. Behrouz A. Forouzan, Data communication and networking, 5E, Tata McGraw Hill, 2013.

Reference Book:

1. Computer networking- A top-down approach, Pearson Publications. 2017 edition.

gay o. Singholi Professor In-charge, USAR **Suru Gobind Singh Indraprastha University** (East Dethi Campus) Surajmal Vihar, Delni-110092

Approved by BoS of USAR: 1/08/22, Approved by AC sub-committee: 29/08/22 Page | 55

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Semester: 4 th			
Paper code: AIDS256	L	P	Credits
Subject: Computer Networks and Internet Protocol Lab	0	2	1

Marking Scheme

1. Teachers Continuous Evaluation: 40 Marks

2. End term Examination: 60 Marks

INSTRUCTIONS TO PAPER SETTERS:

Maximum Marks: 60

- 1. This is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under the intimation to the office of the HOD/ Institution in which the appear is being offered from the list of practicals below.
- 3. Instructors can add any other additional experiments over and above the mentioned in the experiment list which they think is important.
- 4. At least 8 experiments must be performed by the students.

Course Objectives:

- 1. To analyse various computer network protocols and components of computer network.
- 2. To design and evaluate the challenges in building networks and as per the requirement of an organization.

Course Outcomes:

CO2 Design, analyse and evaluate network services for homes, data centres, IoT, LANs and WANs.

Course Outcomes (CO) to Programme Outcomes (PO) Mapping (Scale 1: Low, 2: Medium, 3: High)																
CO/ PO	PO 01	PO 02	PO 03	PO 04	PO 05	PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
CO1	2	2	2	2	3	-	8	316	-	1	-	-	-	-	1	1
CO2	2	3	3	2	2	1	1	1	2	1	1	2	1	1	2	1

LIST OF EXPERIMENTS:

- 1. Introduction to basic networking tools: Wireshark and Network Miner.
- 2. Introduction to Datadog tool for data monitoring in network.
- 3. Running and using services/commands like ping, trace, route, nslookup, arp, ftp etc
- 4. Introduction to Network Bandwidth analyser tool for network monitoring
- 5. Implementation of Packet Capture and observations using packet Snotter Ajay S. Singholi
- 6. Explore various aspects of HTTP Protocol.

Professor In-charge, USAR
Guru Gobind Singh Indraprastha University
(East Delhi Campus)
Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22, Approved by AC sub-committee: 29/08/22 Applicable from Batch Admitted in Academic Session 2021-22 Onwards Page | 56

- 7. Tracing DNS with Wireshark.
- 8. Analyzing various parameters for TCP protocol in action.
- 9. Create Ring, Bus, Star and Mesh topology using Cisco Packet Tracer.
- 10. Configure a network using distance vector routing and link state vector routing protocol.
- 11. Implement Dijkstra's shortest path algorithm in network routing.

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Dethi Campus) Suraimal Vihar, Dethi-110092

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-committee: 29/08/22

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Semester: 4 th			
Paper code: AIDS210	L	T/P	Credits
Subject: Fundamentals of Machine Learning	3	0	3

Marking Scheme

Teachers Continuous Evaluation: 25 Marks
 End term Theory Examination: 75 Marks

INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: 75 1. There should be 9 questions in the end term examination question paper 2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks. 3. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Everyunit should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks. 4. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed 5. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required. **Course Objectives:** 1. To understand regression, classification and prediction algorithms to classify data. 2. To gain knowledge about feature selection. 3. To analyse feature engineering techniques to formulate the solutions for the complex problems 4. To apply machine learning techniques in real world problems. **Course Outcomes:** CO1 | Understand machine learning tools and techniques with their applications. CO2 | Apply machine learning techniques for classification and regression. Perform feature engineering techniques. CO₃ Design supervised and unsupervised machine learning based solutions for real-world CO₄ problems.

Cour	Course Outcomes (CO) to Programme Outcomes (PO) Mapping (Scale 1: Low, 2: Medium, 3: High)															
CO/ PO	PO 01	PO 02	PO 03	PO 04	PO 05	PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
CO1	3	3	3	3	3	1	1	1	1	1	1	2	2	3	3	3
CO2	3	3	3	3	2	1	1	1	1	1	1	1	2	3	2	3
CO3	3	3	3	3	2	-	7.	-	-	_	-	-	2	2	2	3
CO4	3	3	3	3	2	1	1	1	1	1	1	2	2	3	B /	3

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Delhi Campus)

Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-committee: 29/08/22

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Course Overview:

This course covers fundamental concepts and methods of computational data analysis, including pattern classification, prediction, visualization, and recent topics in machine learning. The course will give the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how, why, and when they work. The underlying theme in the course is a statistical inference as it provides the foundation for most of the methods covered.

UNIT I: [10]

Introduction to machine learning-Basic concepts, developing a learning system, Learning Issues, and challenges. Types of machine learning: Learning associations, supervised, unsupervised, semisupervised and reinforcement learning, Feature selection Mechanisms, Imbalanced data, Outlier detection, Applications of machine learning like medical diagnostics, fraud detection, email spam detection

UNIT II: [10]

Supervised Learning- Linear Regression, Multiple Regression, Logistic Regression, Classification; classifier models, K Nearest Neighbour (KNN), Naive Bayes, Decision Trees, Support Vector Machine (SVM), Random Forest

UNIT III: [10]

Unsupervised Learning- Dimensionality reduction; Clustering; K-Means clustering; C-means clustering; Fuzzy C means clustering, EM Algorithm, Association Analysis- Association Rules in Large Databases, Apriori algorithm, Markov models: Hidden Markov models (HMMs).

UNIT IV: [10]

Reinforcement learning- Introduction to reinforcement learning, Methods and elements of reinforcement learning, Bellman equation, Markov decision process (MDP), Q learning, Value function approximation, Temporal difference learning, Concept of neural networks, Deep Q Neural Network (DQN), Applications of Reinforcement learning.

Text Books:

- 1. Tom M. Mitchell, Machine Learning, McGraw-Hill, 2010.
- 2. Ethem Alpaydin, Introduction to Machine Learning, MIT Press, Pearson, Third Edition, 2014.
- 3. Bishop, Christopher. Neural Networks for Pattern Recognition. New York, NY: Oxford University Press, 1995

Reference Books:

1. Ethem Alpaydin, (2004), Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press

2. T. Astie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning, Springer (2nd ed.), 2009

3. Bishop, C., Pattern Recognition and Machine Learning. Berlin: Springer-Verlag

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University

(East Delhi Campus) Approved by BoS of USAR: 1/08/22, Approved by AC sub-committee in 29/08/2210092 Page | 59

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Semester: 4 th			
Paper code: AIDS258	L	P	Credits
Subject: Fundamentals of Machine Learning Lab	0	2	1

Marking Scheme

- 3. Teachers Continuous Evaluation: 40 Marks
- 4. End term Examination: 60 Marks

INSTRUCTIONS TO PAPER SETTERS:

Maximum Marks: 60

- 1. This is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under the intimation to the office of the HOD/ Institution in which the appear is being offered from the list of practicals below.
- 3. Instructors can add any other additional experiments over and above the mentioned in the experiment list which they think is important.
- 4. At least 8 experiments must be performed by the students.

Course Objectives:

- 3. To formulate and analyse algorithm based on machine learning.
- 4. To design the use cases of machine learning algorithms as per the user requirement.

Course Outcomes:

- Apply and differentiate machine learning algorithms for regression, classification and prediction problems.
- CO2 Implement supervised and unsupervised machine learning models to analyse data for executing feature engineering and feature selection for real-life scenarios.

Cours	Course Outcomes (CO) to Programme Outcomes (PO) Mapping (Scale 1: Low, 2: Medium, 3: High)															
CO/ PO	PO 01	PO 02	PO 03	PO 04		PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
CO1	3	3	3	3	3	1	1	1	1	1	1	2	2	3	3	3
CO2	3	3	3	3	3	1	1	1	1	1	2	1	2	3	2	3

LIST OF EXPERIMENTS:

- 1. Study and Implement Linear Regression.
- 2. Study and Implement Logistic Regression.
- 3. Study and Implement K Nearest Neighbour (KNN).
- 4. Study and Implement classification using SVM.
- 5. Study and Implement Bagging using Random Forests.
- 6. Study and Implement Naive Bayes.
- 7. Study and Implement Decision Trees.

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Dethi Campus) Surajmal Vihar, Delhi-110092

Approved by BoS of USAR : 1/08/22, Approved by Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Approved by AC sub-committee: 29/08/22

- 8. Study and Implement K-means Clustering to Find Natural Patterns in Data.
- 9. Study and Implement Gaussian Mixture Model Using the Expectation Maximization.
- 10. Study and Implement Classification based on association rules.
- 11. Study and Implement Evaluating ML algorithm with balanced and unbalanced datasets.
- 12. Comparison of Machine learning algorithms based on different-different parameters.

CH

Froi: FYEY S. Singholi
Proiesser in tharge, USAR
Suru Gebind Sifigh Indraprastha University
(East Bellii Campus)

Approved by BoS of USAR: 1/08/22, Approved by AC sub-committee: 29/08/22 Applicable from Batch Admitted in Academic Session 2021-22 Onwards Page | 61

Semester: 4 th			
Paper code: AIDS212	L	T/P	Credits
Subject: Computational Methods	3	0	3

Marking Scheme

1. Teachers Continuous Evaluation: 25 Marks

2. End term Theory Examination: 75 Marks INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: 75 1. There should be 9 questions in the end term examination question paper 2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks. 3. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Everyunit should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks. 4. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks. 5. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required. Course Objectives: 1. To develop a practical approach to mathematical problem solving. 2. To introduce many commonly used tools and techniques in numerical work. 3. To convert algorithms and techniques to working computer codes. 4. To understand the nuances of the numerical techniques and computer applications of the same. Course Outcomes: Ability to understand numerical techniques to find the roots of non-linear equations and solution of system of linear equations. Ability to understand the solution of the linear simultaneous equations using iterative CO₂ methods and apply them to real world applications. Ability to understand numerical differentiation and integration and numerical solutions of CO₃ ordinary and partial differential equations. Ability to understand numerical methods to solve the ordinary differential equation and CO₄ partial differential equation.

Cours	se Out	tcome	s (CO) to P	rogra	mme	Outco	mes (F	PO) M	apping	g (Sca	ale 1: I	ow, 2:	Medi	ım, 3:	High)
CO/ PO	PO 01	PO 02	PO 03	PO 04	PO 05	PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
CO1	3	2	2	3	-	-	_	-	-	-	-	-	-		-	-
CO ₂	3	2	3	3	1	1	1	1	1	1	1	1	1	1	1	1
CO3	3	2	3	3	<u> 1927</u>	_	-	-	-	-	-	-	- 1	-	_	
CO4	3	2	3	3	-	-	-0	_	2	-	-	-		N		_

M. ryay S. Singholi Professor In-charge, USAR suru Gobind Singh Indraprastha University

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-sommittee

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

UNIT I: [10]

Numerical solution to Linear algebraic & transcendental equations- Numerical algorithms and their complexities, Computer implementation and efficiency, Root finding- bracketing methods: Bracketing Methods, graphical methods, Bisection method, False Position (Regula Falsi), Root finding -Open Methods: Simple Fixed-Point Iteration, Newton-Raphson method, Secant methods, Brent's method

UNIT II: [12]

Numerical linear algebra- Gauss elimination, Pivoting, Tridiagonal systems, LU factorization, Gauss elimination as LU factorization, Cholesky factorization, Matrix inverse and condition, Error analysis and system condition. Iterative Methods: Gauss-Seidel method, Nonlinear Systems. Eigenvalues: The Power Method, Interpolations, Lagrange's, piecewise/splines

UNIT III: [10]

Numerical Differentiation- High-Accuracy differentiation formulas, Richardson Extrapolation, Derivatives of unequally spaced data, Partial Derivatives. Numerical Integration: Newton-Cotes Formulas, The trapezoidal rule, Simpson's Rules, Higher-Order Newton-Cotes formulas, Integration with unequal segments, Numerical Integration of Functions, Romberg integration, Gauss quadrature, Adaptive quadrature

UNIT IV: [8]

Ordinary differential equations- Euler's Method, Runge-Kutta Methods, Adaptive methods, finite difference methods, Initial value problems, Boundary value problems, Partial differential equations

Text Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2000.

Reference Books:

1. Numerical Methods in Engineering & Science (with Programs in C,C++ & MATLAB), B. S. Grewal, Khanna Publishers.

2. Numerical Methods for Engineers, Steven Chapra, Raymond Canale, McGraw-Hill Higher Education, 2010

> Prot. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Defhi Campus) Suraimal Vihar, Dalhi-110092

Approved by BoS of USAR: 1/08/22, Approved by AC sub-committee: 29/08/22 Page | 63

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Semester: 4 th			
Paper code: AIDS214	L	T/P	Credits
Subject: Effective Technical Writing	1	0	1

Marking Scheme

- 1. Teachers Continuous Evaluation: 25 Marks
- 2. End term Theory Examination: 75 Marks

INSTRUCTIONS TO PAPER SETTERS:

Maximum Marks: 75

- 1. There should be 9 questions in the end term examination question paper
- 2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks.
- 3. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Everyunit should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks.
- 4. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.
- 5. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.

Course Objectives:

- 1. To understand the fundamentals of effective technical writing.
- 2. To develop the skill of preparing logical and persuasive technical papers/proposals/
- 3. To apply standard technical formats for drafting protocol and research papers.
- 4. To inculcate habits of effective technical writing applying precision, conciseness, and lucidity.

Course Outcomes:

CO1	The concepts of effective technical writing
	Apply precision, conciseness and lucidity while writing
CO3	Demonstrate by writing a technical paper/article by using global standard formats.

Cours	se Out	come	s (CO) to P	rograi	mme (Outco	mes (P	O) M	apping	g (Scal	e 1: Lc	w, 2: I	Mediu	n, 3: H	ligh)
CO/ PO	PO 01	PO 02	PO 03	PO 04	PO 05	PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
CO ₁	1	-	-	-	2	-	ã.	<u> </u>	1	3	-	2		1	-	1
CO2		•	-	-	2	-0		-	1	3		2	-	-		
CO3	1	1	1	1	2	1	1	1	1	3	1	2		林	1	1

Prof. Ajay S. Singholi Professor In-charge, USAR

Approved by BoS of USAR: 1/08/22, Approved by Actin Gobing Single Edgas Astha University Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Course Overview: -

Under Effective Technical Writing, students are expected to understand the process of writing technical research papers/ articles. The students are required to take up a topic of their choice and write a research paper/ article on the same using state-of-art document preparation software like Latex, overleaf, etc. Students must be familiar with all primary international template styles of a research paper like IEEE, Springer, ACM, etc. Students will also be taught various referencing formats (for example: APA). Research paper/ article writing is a must-have skill for future scientists & researchers, and it opens up their domain of knowledge. The research paper/article/proposal submitted by students will be checked for plagiarism. This will lead to the development of skills including proper paper format, proper referencing, inclusion of figures, tables, use of keywords, writing abstract, title etc.

> ಗರು. Ajay S. Singholi Professor In-charge, USAR

aru Gobind Singh Indraprastha University (East Dethi Campus)

Semester: 4 th			
Paper code: AIDS216	L	T/P	Credits
Subject: Emerging Trends in Technological Industries	1	0	1
Marking Scheme			1

Teachers Continuous Evaluation: 25 Marks
 End term Theory Examination: 75 Marks

INSTRUCTIONS TO PAPER SETTERS:

Maximum Marks: 75

- 1. There should be 9 questions in the end term examination question paper
- 2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks.
- 3. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Everyunit should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks.
- 4. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.
- 5. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.

Course Objectives:

- 1. To Understand the importance of seeking experts in the technological domain
- 2. To remain technically abreast with latest developments world-wide.

Course Outcomes:

CO1	Understand the	importance	of having	awareness	of latest technological Trends.
000	A 1 .1 1				

CO2 | Apply the knowledge gained by interacting with experts in their day to day lives.

Course Outcomes (CO) to Programme Outcomes (PO) Mapping (Scale 1: Low, 2: Medium, 3: High)

CO/ PO	PO 01		PO 03	PO 04				PO 08			PO 11		PS O1	PS O2	PS O3	PS O4
CO1		1	-	1	3	1	1		1	1		2	1	2	3	1
CO2	2	1	1	1	3	1	1	1	1	1	1	2	1	2	3	1

Course Overview:

In this, the faculty coordinator will invite experts from the industry/ academia to give seminars/webinars/expert lectures to students on recent technological advances in the industry. In every semester, at least 8 seminars/webinars/expert lectures should be conducted. An evaluation would be conducted by the faculty coordinator based on quiz, report submissions, etc. on the seminars/webinars/expert lectures conducted. The aim is to give the latest technical and research exposure to the students.

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Dethi Campus)

Approved by BoS of USAR: 1/08/22, Approved by AC sub-sommitteen, 20/08/22, Applicable from Batch Admitted in Academic Session 2021-22 Onwards Page | 66

Maximum Marks: 60

Semester: 4 th			1.2
Paper code: AIDS260	L	T/P	Credits
Subject: Practicum (Integrated Project)	0	2	1
Marking Scheme			

1. Teachers Continuous Evaluation: 40 Marks

2. End term Examination: 60 Marks

INSTRUCTIONS TO EVALUATOR:

1.	This is an Integrated Project to be created by the students on the basis of the knowledge gained
	by them.
2.	The instructor will continuously evaluate the student's performance in the semester.
3.	Practicum shall be evaluated based on the novelty, originality of work, contribution towards
	society.

4. Project report of the practicum will be submitted at the end of the semester

4. PR	Project report of the practicum will be submitted at the end of the semester															
Cour	Course Objectives:															
1.	To	To enhance experiential learning component by applying the knowledge and skills gained														
	thre	through various subjects in developing a solution for real-world problems.														
2.		To give an exposure to multi-disciplinary domains to identify problems that exist around														
	the	them to develop solutions thereby improving their technical skillset and their														
		employability.														
3.	To	To increase the collaboration skills.														
4.	To	To understand the feasibility, quality, novelty, innovation and the application of the														
		project.														
Cour	se O	utcom	ies:													
CO1					conce	pts le	earned	l so fa	r for	projec	t iden	tificat	ion, fo	ormula	ation,	and a
		sible s	soluti	ion.												
CO ₂	De	velop	and	demo	nstrate	e a cc	mpre	hensiv	e tecl	nnical	know	ledge	on the	e selec	cted pi	oject
	top														_	
CO ₃	1					vative	tech	nolog	ical s	olutio	ns to	real	probl	ems ı	ıtilizin	g an
				roach												
Course	e Out	comes	(CO) to Pı	ogran	nme (Outcor	mes (P	O) Ma	apping	(Sc	ale 1: I	Low, 2:	Medi	um, 3:	High)
	PO		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS
	01		03	04	05	06	07	08	09	10	11	12	01	02	03	O4
CO1 3	3	3	3	3	2	2	1	2	1	1	3	3	2	2	2	3
CO ₂	3	3	3	3	2	2	1	2	1	1	3	3	2	2	2	3
CO3 3	3	3	3	3	2	2	1	2	1	1	3	3	2	2	2	3

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-communities Cappy 2/2

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Course Overview:

Under practicum the students will be involved in experiential learning. The students are required to apply the knowledge and skills gained through various subjects in developing a solution for solving real world problems. Interdisciplinary projects give an opportunity to students to identify problems that exist around them for which they could develop solutions. Working as a team for the project also increases their collaboration skills.

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Delhi Campus) Surajmal Vihar, Delhi-110092

Course Overview:

This course is aimed at giving inputs that will help to ensure the right understanding and right feelings in the students in their life and profession, enabling them to lead an ethical life. In this course, the students learn the process of self-exploration, the difference between the Self and the Body, the naturally acceptable feelings in relationships in a family, the comprehensive human goal in the society, the mutual fulfilment in the nature and the co-existence in existence.

UNIT I: [8]

Introduction to Value Education - Need, Basic Guidelines, Content and Process for Value Education, Self-Exploration, Natural Acceptance, Experiential Validation as the mechanism for Self Exploration. Continuous Happiness and Prosperity, Basic Human Aspirations. Right Understanding, Relationship and Physical Facilities - the basic requirements for fulfillment of aspirations of every human being with their priority, Understanding Happiness and Prosperity, Method to fulfill the above human aspirations: Understanding and living in harmony at various levels.

UNIT II: [12]

Understanding Harmony in the Human Being, human being as a Co-existence of the sentient 'I' and the material 'Body'. Understanding the needs of Self ('I') and 'Body', happiness and physical facility, Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer), Understanding the characteristics and activities of 'I' and harmony in 'I', Understanding the harmony of I with the Body: Sanyam and Health, correct appraisal of Physical needs, meaning of Prosperity, Programs to ensure Sanyam and Health.

UNIT III: [12]

Harmony in Human-Human Relationship, Understanding values in human-human relationship, meaning of Justice (Nine universal values in relationships) and program for its fulfillment to ensure Mutual Happiness, Trust and Respect as the foundational values of relationship, Understanding the meaning of Trust, Difference between Intention and Competence, Understanding the meaning of Respect, Difference between Respect and Differentiation, the other salient values in relationship, Understanding the harmony in the society (society being an extension of family), Resolution, Prosperity, Fearlessness (trust) and Co-existance as comprehensive Human Goals, Visualizing a universal harmonious order in society: Undivided Society, Universal order from family to world family.

UNIT IV:

Understanding Harmony in Nature. Interconnectedness: Self-regulation and Mutual Fulfillment among the Four Orders of Nature: Recyclability and Self-regulation in Nature. Realizing Existence as Co-existence at All Levels. The Holistic Perception of Harmony in Existence. Natural Acceptance of Human Values. Definitiveness of (Ethical) Human Conduct. A Basis for Human tie Education, Humanistic Constitution and Universal Humanistic Order.

Prof. Aiav S. Singholi

Semester: 3 rd			
Paper code: AIDS259	L	T/P	Credits
Subject: Web Programming Lab	0	2	1

Marking Scheme

1. Teachers Continuous Evaluation: 40 Marks

2. End term Examination: 60 Marks

INST	RUC	TION	IS T	O PA	PER S	SETT	ERS					Max	imum	Mar	ks: 60	
1.					ical su									1,2002	1101 00	
2.								he tead	cher in	the fi	rst we	ek of	the cla	ss con	nmeno	cement
	unde	The practical list shall be notified by the teacher in the first week of the class commencement under the intimation to the office of the HOD/ Institution in which the appear is being offered														
	from	from the list of practicals below.														
3.	Instructors can add any other additional experiments over and above the mentioned in the															
	experiment list which they think is important. 4. Atleast 8 experiments must be performed by the students.															
			_	iment	s musi	t be p	erforn	ned by	the s	tudent	s.					
Cour	se Ol	jectiv	es:													
1.	1. To apply JavaScript Language programming concepts and techniques to create web pages and develop, plan and debug web pages as per the requirement. CSS, this course will familiarize students with how browsers															
2.	To (D	unde OM),	rstan how	d hov	brow elop	vsers : dynar	repres	sent w	ebpag	e data	using es usi	the I	Docum aScri	nent O	bject	Model wser
Cour		ıtcom								1	,			3 V 111 VI	10 010	115011
CO1	Ap	ply di	iffere	nt coi	e scri	pting	modu	les to	design	n a ser	ver.					
CO2	De use	esign a ed to r	nd de esolv	eveloj /e rea	singl world	le-pag d issu	ge app es.	licatio	ns, in	teracti	ve and	d dyna	mic w	ebsite	s that	can be
Cours	se Out	comes	(CO) to P	rograr	nme (Outco	mes (P	O) Ma	apping	(Scal	e 1: Lc	w, 2: N	Mediur	n, 3: H	(igh)
CO/	PO		PO	PO		PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	IPS
PO	01		03	04		06	07	08	09	10	11	12	01	02	03	04
CO1	2	2	2	2	2	-	-	-	-	-	-	2	1	- 17	1	1
CO2	2	2	2	2	2	1	1	1	1	1	1	3	1	1	1	1

Course Overview:

This course will cover JavaScript technologies that power a modern full-stack development workflow, including server-side scripting, single-page web applications with MVC structure, package management, and JSON data storage. The students will learn server-side JavaScript with web frameworks such as Node is making it simple to create and deploy complex, data-driven web applications.

Professor In-charge, USAR
Guru Gobind Singh Indraprastha University
Approved by AC sub-coman Desir Carp 108/22

Ajay S. Singholi

Approved by BoS of USAR: 1/08/22, Approved by Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Suraimal Vihar, Palaid 10392

Semester: 3 rd		1	
Paper code: AIDS213	L	T/P	Credits
Subject: Critical Reasoning and Systems Thinking	2	0	2

Marking Scheme

1. Teachers Continuous Evaluation: 25 Marks 2 End term Theory Examination: 75 Marks

2.	End t	term '	Theo	ry Exa	aminat	ion: 7	75 Ma	rks								
INS'	TRUC	CTIO	NS T	O PA	PER	SET"	TERS	5:			N		um I	Marks	: 75	
									exam	inatio	n aues	tion p	aner		• /-	
2.	Ques have	stion l objec	No. 1 etive	shou or sho	ld be ort ans	comp wer t	ulsory ype qu	and a	cover ns. It s	the en hould	tire sy be of	llabus 15 ma	s. This irks.	quest		
3.	sylla	bus. E	Every	unit s	hould	have	two q	uestio	ns. Ho	weve	r, stud	ents n	f four nay be	units asked	as pe I to att	r the empt
4	Tho	1 que	SHOI	1110111 	cacii	uiiii.	Each (Juesu	on sho	ula De	: 13 III	arks.	C	,		Œ1
4.	THE (questi Ional/	OHS a	re to t	be irai	nea k	eeping	g in vi	ew the	e learn	ing ou	itcome	es of c	ourse/j	paper.	The
	Stanc	iaru/	ievei	oi ti	ie que	estion	s to	be asi	kea sr	iould	be at	the le	evel c	f the	presci	ribed
-		ooks.			(:-	٠.٠٠	. 1	1 4	/ 1		, .				• •	
5.	Ine	requi	reme	nt or	(scie	ntific) calc	ulator	s/ log	-table:	s/ data	a-table	es ma	y be	specif	ied if
Con	requi	hiosti	TIOGA				-									
Cou	130 0	Djecu	ives.													
1	· To	incul	cate o	critica	l reas	oning	and s	ystem	think	ing to	take d	lecisio	ns.			
2	. To	unde	rstan	d Crit	ical re	asoni	ng, ex	camin	e assu	mptio	ns, un	cover	hidde	n valu	es, ev	aluate
	evi	dence	, acc	ompli	sh act	ions,	and as	ssess o	conclu	sions.						
3											the w	ay a s	ystem	's cons	stituent	parts
	inte	errelate	ed and	d how	systen	ns wo	rk ove	rtime	and w	ithin th	ie cont	text of	larger	syster	ns	F
4	. To	form	ulate	solu	tions	for so	ocial a	and b	usines	s ente	rprise	s usin	g crit	ical th	ninkin	g and
	bra	instor	ming	g and	covert	oppo	rtunit	ies int	o inno	vation	n prod	ucts a	nd ser	vices.		5 and
Cou	rse O	utcon	nes:								F	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
CO1	Ap	ply cr	itical	reaso	oning:	so as	to hav	e clar	ity and	d wisd	om w	hile de	ecision	1 maki	ing.	
CO2														orativ	_	lle to
		ogniz	e opr	ortun	ities a	nd fir	nd inn	ovativ	e solu	tions	for the	same	2011at	Joidin	✓ SKI	113 10
CO3	Ap	ply ar	nd an	alyse	systen	ns thi	nking	critic	al thin	kino	lateral	think	ing c	eative	think	ing to
		ferent	real-	life so	cenari	os.		,		5,	~~~1 W1	IIII	e, v	Juli	, cilling	ing to
CO4							roadl	v defi	ned or	portu	nities	into i	ททดงล	tion p	roduct	s and
	ser	vices	and o	reate	a busi	ness	or soc	ial en	terpris	e.				p	Jauvi	and
Cours											(Scale	e 1: Lo	w, 2: I	Mediur	n, 3: H	igh
CO/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS
PO	01	02	03	04	05	06	07	08	09	10	11	12	01	02	03	04
	3	3	3	3	1	1	1	1	-	1	1	3	1	1	47	1
CO ₂		3	3	3	1	1	•	-	-	-	1	2	1	1	1	1
CO3	2	3	3	3	1	1	-	1	-	-	1	2	1	/	1	1
CO4	3	3	3.	3	1	1	-	_	1	1	1	3	1	1	à	
Ture	14	1												-		

Prof. Ajay S. Singholi
Professor In-charge, USAR
Approved by AC sub-committee pelli Carrius)
-22 Onwards
Surajmal ViRY, De 134 110092

Approved by BoS of USAR: 1/08/22,

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Semester: 3 rd			
Paper code: AIDS215	L	T/P	Credits
Subject: Selected Readings	1	0	1

Marking Scheme

Teachers Continuous Evaluation: 25 Marks
 End term Theory Examination: 75 Marks

INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: 75 1. There should be 9 questions in the end term examination question paper 2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks. 3. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Everyunit should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks. 4. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks. 5. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required. **Course Objectives:** 1. To enhance comprehension skills. 2. To learn and enhance communication and speaking skills. **Course Outcomes:** CO₁ Apply and analyse comprehension and reading skills.

Cours	se Out	comes	s (CO) to P	rograi	mme (Outco	mes (P	O) Ma	apping	(Scal	e 1: Lo	ow, 2: 1	Mediur	n, 3: H	(igh)
CO/ PO	PO 01	PO 02	PO 03	PO 04	PO 05	PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
CO1	-	-	-		-	2	-	1	1	3	7	3	-	-	-	1
CO2	1	1	1	1	1	1	1	1	1	3	-	3	1	1	1	-

Course Overview:

CO₂

Reading books other than one's curriculum expands the imaginative horizon of a student. Under Selected readings, the students will be required to select a book (a non-technical book that is not related to engineering) that they want to read in the semester. Reading fiction, non-fiction and science books are beneficial for students as it is a vital means to imagine a life other than our own, which in turn makes us more empathetic beings. The students will prepare a summary of the report and will be

Prof. Ajay S. Singholi
Professor In-charge, USAR

Guru Gobind Singh Indraprastha University

Approved by AC sub-congration in 22 (1984)

Approved by BoS of USAR : 1/08/22, Approved by Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Develop presentation and report writing skills.

Suraimal VihaP agini-1 80692

evaluated based on the presentation that they give on the book read. The whole idea is to present the story in a customized manner. That might also include a video/poster created for the same.

Evaluation Rubrics might be based on:

- Remembering: Recalling or retrieving previously read information.
- Understanding: Comprehending the content and expressing in one's own words.
- Relating and Interpreting: Relating and interpreting the theme or message of the book with a new context or situation.
- Critical Evaluation: Making critical comments about the choice of subject, handling of the subject, author's style of writing, etc.
- Communication Skills: Speaking skills, Report writing, Presentation skills.

Sample Books (not limited to these):

S. No	Title	Authors	Language
1.	Exam Warriors	Narendra Modi	English
2.	Work Ethics	Narendra Modi	English
3.	स्टेफेन हार्किंग	महेश शर्मा	Hindi
4.	Jeff Bezos: Biography of A Billionaire Business Titan	Elliot Reynolds	English
5.	Bill Gates: A Biography	Michael B. Becraft	English
6.	स्टील किंग लक्ष्मी मित्तल	प्रतीक्षा ऍम तिवारी	Hindi
7.	फेसबुक निर्माता: मार्क जुकेरबर्ग	संजय भोला 'धीर	Hindi
8.	Stay हंगरी Stay फुलिश	रश्मि बंसल	Hindi, Gujrati, Tamil
9.	मैं, स्टीव: मेरा जीवन मेरी जुबानी	नीरू	Hindi
10.	अमीर न १ एलन मस्क की बायोग्राफी	पूर्णिमा मजूमदार	Hindi
11.	सुन्दर पिचाई : Google का भविष्य	जगमोहन भानवेरी	Hindi
12.	Dream With Your Eyes Open	Ronnie Screwvala	English
13.	डॉट्स कनेक्ट करें	रश्मि बंसल	Hindi
14.	Take Me Home	Rashmi Bansal	English
15.	Bhujia Barons: The Untold Story of How Haldiram Built A 5000 Crore Empire	Pavitra Kumar	English
16.	The Z Factor: My Journey as The Wrong Man at The Right Time	Subhash Chandra And Pranjal Sharma	English
17.	The Hard Things About Hard Things	Ben Horowitz	English
18.	Blue Ocean Strategy	Harvard Business School	Inglish .

Prof. Ajay S. Singholk Professor In-charge, USAR Approved by AC sub-committee 20/08/2009

Approved by BoS of USAR: 1/08/22,

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Suraimal Vihar, Page 10872

10			
19.	Zero to One: Notes on Start Ups, or How to Build the Future	Peter Thiel & Blake Masters	English
20.	The Holy Book of Luck	A Saed Alzein	English
21.	How To Begin	Michael Bungay Stanier	English
22.	Start-up Myths and Models	Rizwan Virk	English
23.	80/20 सिद्धांत - कम के साथ अधिक प्राप्त करने का रहस्य	रिचर्ड कोचो	Hindi
24.	Discover Your Destiny: 7 Stages of Self Awakening	Robin Sharma	English
25.	Hyper Focus	Chris Bailey	English
26.	How To Talk to Anyone	Leil Lowndes	English
27.	Never Split the Difference	Voss, Chris,Raz, Tahl	English
28.	Games People Play	Berne, Eric	English
29.	Achieving Meaningful Success Unleash the Power of Me	Dr. Vivek Mansubgh	English
30.	गेटिंग टू यस	रोजर फिशर	Hindi
31.	Your Next Five Moves	Patrick Bet-David	English
32.	बड़ी सोच का बड़ा जादू	श्वार्ट्ज, डेविड जू	Hindi
33.	How To Become a People Magnet	Marc Reklau	English
34.	सबसे मुश्किल काम सबसे पहले	ब्रायन ट्रेसी	Hindi
35.	Show Your Work	Austin Kleon	English
36.	How To Find Fulfilling Work	Roman Krznaric	English
37.	जीवन के अद्भुत रहस्य	गौर गोपाल दास	Hindi
38.	Attitude Is Everything	Jeff Keller	English
39.	The World is yours to change	Daisaku Ikeda	English
40.	The Defining Decade: Why Your 20's Matter and How the Make the Most of Them Now	Jay, Meg	English
41.	Quiet: The Power of Introvert in A World That Can't Stop Talking	Susan Cain	English
42.	Find Your Why: A Practical Guide for Discovering Purpose You and Your Team	Simon Sinek	English
43.	डीप वर्क	कैल न्यूपोर्ट	Hindi
44.	कैसे करे स्टार्ट उप बिज़नेस शुरू : बिज़नेस का सपना पूरा करने की गाइड	पंकज गोयल	Hindi
45.	Alex Adventure in Number land	Alex Bellos	English

Prof. Ajay S. Singholl
Professor In-charge, USAR
Guru Gobind Singh Indraprastha University
Approved by AC sub-comparticethi 22/16/16/22

-22 Onwards Suraimal VihaP, aglei-|130892 Approved by BoS of USAR: 1/08/22, Applicable from Batch Admitted in Academic Session 2021-22 Onwards

46.	A Certain Ambiguity	Gaurav Suri	English
47.	The Everyday Hero Manifesto	Robin Sharma	
			English
48.	The Incredible World of Nichiren Buddhism	3 0	English
49.	My Life in Full: Work, Family, And Our Future (With A Special Epilogue for India)	Indra Nooyi	English
50.	India's Greatest Minds: Spiritual Masters, Philosophers, Reformers	Rao, Mukunda	English
51.	Inspiring Thoughts	Swami Vivekananda	English
52.	The Man Behind the Wheel: How Onkar S. Kanwar Created a Global Giant	Tim Bouquet	English
53.	Azim Premji: The Man Beyond the Billions	Sundeep Khanna, Varun Sood	English
54.	Warren Buffett: Inside the Ultimate Money Mind Warren Buffett: Inside the Ultimate Money Mind	Robert G. Hagstrom	English
55.	Rahul Bajaj: An Extraordinary Life Official Biography of The Chairman of Bajaj Group	Gita Piramal	English
56.	5 Am क्लब: अपनी सुबह का मालिक बनें, अपना जीवन बढ़ाएं	रॉबिन शर्मा	Hindi
57.	Happiness Becomes You: A Guide to Changing Your Life for Good	Tina Turner	English
58.	एटॉमिक हैबिट्स: छोटे बदलाव, असधरन परिनाम	जेम्स क्लियर (लेखक), डॉ सुधीर दीक्षित (अनुवादक)	Hindi
59.	हाउ टू डेवेलोप सेल्फ कॉन्फिडेंस एंड इन्फ्लुएंस पीपल बी पब्लिक स्पीकिंग	डेल कारनेगी	Hindi
60.	धन-संपत्ति का मनोविज्ञान	मॉर्गन हाउसेल	Hindi
61.	रिच डैड पुअर डैड	रॉबर्ट टी. कियोसाकी	Hindi, Bengali
62.	इकिगाई	फ्रांसेस मिरेलस हेक्टर गार्सिया	Hindi, Marathi, Bengali
63.	आपके अवचेतन मन की शक्ति	जोसेफ मर्फी	Hindi, Bengali
64.	सोचा और अमीर हो जाओ	नेपोलियन हिल	Hindi, Bengali
65.	पर्सनालिटी डेवेलोप्मेटन हैंडबुक	डीपी सभरवाल	Hindi
66.	पावर ऑफ़ पॉजिटिव ऐटिटूड	रोजर फ्रिट्ज	Hindi
67.	चिंता छोडो सुख से जियो	डेल कारनेगी	Hindi, Bangla, Marathi, Gujrati &
68.	मुट्ठी में तकदीर	रॉबिन शर्मा (Jua -

Approved by BoS of USAR: 1/08/22,

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Prof. Ajay S. Singholi
Professor In-charge, USAR
Approved by ACGUITE Cohind Single Index 13 University
(East Delta Campus)
Surajmal Vihar, Delhi 110092

(0	1376-3-0		
69.	जैसे विचार, वैसा जीवन	जेम्स एलन (लेखक), डॉ.	
		सुधीर दीक्षित	
70.	चाणक्य के टॉप 100 प्रेरक विचार	(अनुवादक)	77. 11
		महेश शर्मा	Hindi
71.	'लोक व्यवहार'	डेल कारनेगी	Hindi, Bangla,
			Marathi, Gujrati &
72.	रहसय	रोंडा बर्न	Oria Hindi
73.	मेमोरी: हाउ टू डेवेलोप, ट्रैन, एंड यूज़ इट	विलियम वॉकर	Hindi
	ा । । । । । । । । । । । । । । । । । । ।	एटिकंसन	Tindi
74.	बड़ा सोचै, बड़ा करै	अंकुर वारिकू	Hindi
75.	द लॉ ऑफ अट्रैक्शन	एस्थर और जेरीहिक्स	Hindi
76.	गोरा	रवींद्र नाथ	Hindi, Bengali
77.	सफलता शब्दों का खेल है	डॉ. सुधीर दीक्षित	Hindi
78.	पॉजिटिव थिंकिंग	नेपोलियन हिल	Hindi
79.	हाउ टू एन्जॉय योर लाइफ एंड जॉब	डेल कारनेगी	Hindi, Bengali
80.	Swami Vivekananda Bani O Rachana	Swami Vivekananda	Bengali
81.	(Set) - 10 Volumes - Bengal The Wisdom of Lotus Sutra	Daisaku Ikeda	English
82.	स्वामी विवेकानंद पुस्तकः जीवन, विचार		Marathi
	आणि कार्य	Kalkate	Maraini
83.	विश्वगुरु विवेकानंद	एम. आई. राजसवे	Hindi
84.	बिजनेस कोहिनूर रतन टाटा	बी.सी. पाण्डेय	Hindi
85.	Rattan Tata	P M Tiwari	Bengali
86.	गीतांजलि	रवींद्र नाथ	Hindi, Bengali
87.	सन्यासी जिसने अपनी संपति बीच दी	रॉबिन शर्मा	Hindi
88.	Ignited Minds: Unleashing the Power	Dr APJ Abdul Kalam	English
=	Within India: Unleashing the Power Within India		
89.	आपका भविष्य आपके हाथ में	ए पीजे कलाम	Hindi
90.	द स्टोरी ऑफ़ माय एक्सपेरिमेंट्स विथ ट्रूथ	महात्मा गांधी	Hindi
91.	मैं कलाम बोल रहा हूँ	प्रशांत गुप्ता	Hindi
92.	कौन रोयेगा आपकी मृत्यु पर	रॉबिन शर्मा	Hindi
93.	अग्नि की उड़ान	ए पीजे कलाम	Hindi
94.	आनन्द मठ	बंकिमचंद्र चटर्जी 🔼	Hindi
95.	The Science of Mind Management	Swami	Loglish
		Mukundanadan	4

Approved by BoS of USAR: 1/08/22, Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Prof. Ajay S. Singholi
Professor In-charge, USAR
Approved by A30ru (Robinon Ginght dect 2004608/220 niversity
-22 Onwards
(East Delhi Paggus) 40
Suraimal Vihar, Delhi-110092

96.	Soak Education	Daisaku Ikeda	English		
97.	7 Mindsets for Success Fulfilment and Happiness	Swami Mukundanadan	English		
98.	Business Sutra: A Very Indian Approach to Management	Devdutt Pattanaik	English		
99.	The Five Steps to Success	Yandamoori Veerendranath	English		
100.	You Are Born to Blossom	Dr APJ Abdul Kalam	English		
101.	7 Divine Laws to Awaken Your Best Self	Swami Mukundanadan	English		
102.	The Way of Youth	Daisaku Ikeda	English		
103.	बेबीलोन का सबसे अमीर आदमी	जॉर्ज एस. क्लैसन	Hindi, Telugu		
104.	अमीर होना आपका अधिकारी	जोसेफ मर्फी	Hindi		
105.	Buddha: Spirituality for Leadership & Success	Pranay	English		
106.	सीक्रेट्स ऑफ़ द मिलियनेअर माइंड	टी. हार्व एकर	Hindi		
107.	The Almanack of Naval Ravikant: A Guide to Wealth and Happiness	Eric Jorgenson	English		
108.	Ananda: Happiness Without Reason	Achrya Prashant	English		
109.	The Awakening of Intelligence (New Edition)	J. Krishnamurti	English		
110.	दुनिया का महान सेल्समैन	ओ जी मैंडिनो	Hindi		
111.	जिंदगी वो जो आप बनायें	प्रीति शेनॉय	Hindi		
112.	The White Tiger	Arvind Adiga	English		
113.	Inspirational Thoughts	Swami Vivekananda	English		
114.	जीत आपकी: कामयाबी कीऔर ले जाने वाली सीडी	शिव खेरा	Hindi		
115.	The God of Small Things	Arundhati Roy	English		
116.	Buddhism A Way of Values	Prof. Lokesh Chandra and Dr. Daisaku Ikeda	English		
117.	Buddha At Work: Finding Purposes, Balance, And Happiness at Your Workplace	Geetanjali Pandit	English		
118.	Hope Is a Decision	Daisaku Ikeda	English		

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Delhi Campus) Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-committee: 29/08/22

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Page | 41

DETAILED SYLLABUS FOR 4th SEMESTER

Prof. Ajay S. Singholi
Professor In-charge, USAR
Guru Gobind Singh Indraprastha University
(East Dethi Campus)
Sure/mal Vihar, Dethi-110092

Course Overview:

This course provides an introduction to object oriented programming (OOP) using the Java programming language. This course will provide the students with a solid theoretical understanding of, as well as practical skills. Its main objective is to teach the basic concepts and techniques which form the object-oriented programming paradigm. It aims to design solutions for the complex problems.

UNIT I: [10]

Introduction of Object-Oriented Programming, Benefits of Object Oriented Development, Classes and Objects, Inheritance, Polymorphism, Object- Oriented Design. Overview & characteristics of Java, Program Compilation, Execution Process Organization of the Java Virtual Machine and security aspects, sandbox model.

UNIT II: [10]

Java Fundamentals, Data Types & Literals Variables, Wrapper Classes, Arrays, Arithmetic Operators, Logical Operators, Control of Flow, Loops, Classes and Instances, Class Member Modifiers Anonymous Inner Class Interfaces and Abstract Classes, Inheritance using java, Exception Handling. Collection API Interfaces, Vector, stack, Hashtable, enumeration, set, List, Map, Iterators.

UNIT III: [10]

Multithreading- Extending Thread Class, Runnable Interface, Starting Threads, Synchronization. GUI components in Java: AWT Components, Component Class, Container Class, Layout Managers, swing package. Event Handling: AWT Events, Event, Listeners, Class Listener, Action Event Methods, Focus Event Key Event, Mouse Event, Window Event Adapters.

UNIT IV: [10]

Java I/O: Input/Output Streams, Readers and Writers. JDBC (Database connectivity with MS-Access, Oracle, MS-SQL Server), Object serialization, Socket Programming, development of client Server applications, Design of multithreaded server.

Text Books:

- 1. Patrick Naughton and Herbertz Schidt. Java-2 the complete Reference, TMH.
- 2. Sierra & bates. Head First Java, O"Reilly.

Reference Books:

- 1. E. Balaguruswamy. Programming with Java, TMH.
- 2. Horstmann. Computing Concepts with Java 2 Essentials, John Wiley.
- 3. Decker & Hirshfield. Programming. Java, Vikas Publication.

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indrapraetha University (East Dethi Campus) Suraimai Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22, Approved by AC sub-committee: 29/08/22 Page | 44

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Semester: 4 th			
Paper code: AIDS202	L	T/P	Credits
Subject: Object Oriented Programming	3	0	3

Marking Scheme

1. Teachers Continuous Evaluation: 25 Marks 2. End term Theory Examination: 75 Marks INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: 75 1. There should be 9 questions in the end term examination question paper 2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks. 3. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Everyunit should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks. 4. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks. 5. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required. **Course Objectives:** 1. To Identify importance of object-oriented programming and difference between structured oriented and object-oriented programming features. To use various object oriented concepts to solve different problems. 3. To Learn Java programming Language applying the concepts of object-oriented programming language. To design and implement programs for complex problems, making good use of the features of the language such as classes, inheritance, polymorphism. Course Outcomes: Ability to understand the concepts of object oriented programming i.e. abstract datatypes, **CO1** encapsulation, inheritance, polymorphism. Identify classes, objects, members of a class and relationships among them needed for CO₂ resolving real world problems. Ability to analyse a problem to develop algorithm with suitable logics and concepts of OOPs CO₃ for solving real world problems. Ability to create application or programs using OOP principles and proper program CO₄ structuring. Course Outcomes (CO) to Programme Outcomes (PO) Mapping (Scale 1: Low, 2: Medium, 3: High) CO/PO PO PS PS PS PO 01 02 03 04 05 **l**06 07 08 09 10 11 12 01O2**O3 O**4 CO1 2 3 CO₂ 2 **CO3** 2 3 CO4

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-content Cetti Campus).

22 Onwards

Suraimal Vihar Delhi-100

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

L	P	Credits
0	2	1
	L 0	L P 0 2

Marking Scheme

1. Teachers Continuous Evaluation: 40 Marks

2. End term Examination: 60 Marks

					APEF								imun	ı Mai	rks: 60	0
1. 2. 3.	con app Inst	e prac nmend ear is tructor erime	ctical cemen being rs can nt list	list : nt und g offer add a t whice	shall ler the red fro any otl th they	be not inting the	otified nation list of ldition of is in	d by to the of prace hal exp	e offic ticals perime	eacher be of the below ents over	in t the Ho v. ver and	paper. he fir OD/ Ii d abov	ıstitut	ion in	which	1 the
Cou	ırse (Objec	tives:													- 5
	1. To	o impl oftwar	emen e app	t real- licatio	world	entiti	ies lik	e inhe	ritance	e, hidi	ng, po	lymor	phism	, etc ir	deve	loping
,	2. To	o unde	erstan ing th	d how	v bind olication	ing to	gethe	r the d	lata an	d the	metho	ods op	eratin	g on th	em he	elps in
Cou		Outco														
CO	ı A	pply o	bject	-orien	ited pr	incipl	es to	desigr	progr	rammi	ing so	lutions	s to ac	tual pi	roblen	ıs.
CO2	2 A	nalyse	diffe	rent p	oackag	ges of	objec	t-orie	nted pr	rogran	nming	g langu	iage.			
Cour	se Ou	tcome	s (CC) to P	rogra	mme (Outco	mes (I	PO) Ma	apping	g (Scal	le 1: Lo	ow, 2:	Mediu	n, 3: E	ligh)
Cour		PO	PO	PO 04	PO 05	PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
C O /	PO 01	02	03	1												
CO/PO	01	2	2	2	1	1	1	2 .	1	1	1	3	1	2	1	1

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Dethi Campus) Suraimal Vihar, Dethi-110092

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-committee: 29/08/22

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Page | 45

LIST OF EXPERIMENTS:

- 1. Generate a random number up to 100 and print whether it is prime or not.
- 2. A. Design a program to generate first 10 terms of Fibonacci series.
 - **B.** Find the factorial of a given number using Recursion.
- 3. Find the average and sum of array of N numbers entered by user.
- 4. Create a class to find out the Area and perimeter of rectangle.
- 5. Design a class that perform String operations (Equal, Reverse the string, change case).
- 6. Demonstrate the use of final keyword with data member, function and class.
- 7. Demonstrate the use of keywords try, catch, finally, throw and throws.
- 8. Design a program to demonstrate multi-threading using Thread Class.
- 9. Design a program to create game 'Tic Tac Toe'.
- 10. Design a program to basic calculator using Applet and Event Handling.
- 11. Design a program to read a text file and after printing that on scree write the content to another text file.
- 12. Design a program to count number of words, characters, vowels in a text file.
- 13. Design a program to create simple chat application using Socket Programming.
- 14. Design a program to connect to access database and display contents of the table.

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Delhi Campus) Suraimal Vihar, Delhi-110092

Approved by BoS of USAR: 1/08/22,

Approved by AC sub-committee: 29/08/22

Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Page | 46

Semester: 4 th			
Paper code: AIDS204	L	T/P	Credits
Subject: Database Management Systems	3	0	3

Marking Scheme

Teachers Continuous Evaluation: 25 Marks
 End term Theory Examination: 75 Marks

	INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: 7 1. There should be 9 questions in the end term examination question paper															ks: 75
1.	The	re sho	uld b	e 9 qu	estior	ns in t	he end	d term	exam	inatio	n ques	stion p	aper			
2.	and cover the chine synabus. This question should															
	have objective or short answer type questions. It should be of 15 marks.															
3.	Apart from Question No. 1, the rest of the paper shall consist of four units as per the															
	sylla	syllabus. Everyunit should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks.														
	only	1 que	estion	ı from	each	unit.]	Each o	questi	on sho	ould be	e 15 m	arks.				-
4.	The	The questions are to be framed keeping in view the learning outcomes of course/paper. The														
	stan	standard/ level of the questions to be asked should be at the level of the prescribed														
-	textl	textbooks.														
5.	Ine	The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.														
Con	Course Objectives:															
	 To introduce the concepts of databases, database models, and their uses. To assess the need for Database design to create a strong foundation for application. 															
	3. To understand the various complications & its solution for Transaction management.															
	4. To understand the various complications & its solution for Transaction management.															
at the day affect data bases and its application.																
Course Outcomes:																
COI		Understand the principles of Database Management Systems.														
CO ₂	2 Ap	ply S	tructi	ired Q	uery I	Langu	age to	a var	ied rai	nge of	queri	es and	work	on dat	abase	using
	sta	Apply Structured Query Language to a varied range of queries and work on database using state of art tools.														
CO ₃		Analyse various techniques and various models used for designing databases for different														
~~	rea	real-life situations.														
CO ₄	Inv	Investigate normalized database schema and prepare a report for a real-life scenario.														
Cours	Course Outcomes (CO) to Programme Outcomes (PO) Mapping (Scale 1: Low, 2: Medium, 3: High)															igh)
CO/	PO	PO	PO	PO		PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS
PO	01	02	03	04	05	06	07	08	09	10	11	12	01	O2	03	04
CO1		3	2	2	1		-	-	-	-	1	2	-	2	1	8
CO2		3	2	2	3	-	ı	ī	-	-	1	1	-	Ε.	1	1
CO3		3	3	2	1	1	1	1	1	1	1	3	1	1 .	1	1
CO4	2	3	2	2	1		-	-	-	-	1	3	1	1	1	1
											-					

Course Overview:

Prof. Ajay S. Singholi
Professor In-charge, USAR
Guru Gobind Singh Indraprastha University
(East Delhi Campus)
Approved by AC subscappings, period 2002

Approved by BoS of USAR: 1/08/22, Approved by AC subscription, period (East Delhi Campus)
Applicable from Batch Admitted in Academic Session 2021-22 Onwards Page | 47

The objective of the course is to present an introduction to database management systems with advanced topics of DBMS, with an emphasis on how to organize, maintain and retrieve - efficiently, and effectively - information from databases. It includes Entity-Relational model, Normalization, Relational model, Relational algebra, and data access queries as well as an Introduction to SQL, MongoDB.

UNIT I:

Introduction-Overview of Database System and various Data Models (Hierarchical, Network, and Relational Models), Views of Data, Database Management System, Architecture of DBMS, components of DBMS. Data Independence. Entity-Relationship Model- Entities, Entity Types, Attributes, Relationships, Relationship types, E/R diagram notation.

UNIT II:

Relational Data Model- Concept of Relations, Overview of Various Keys, Referential Integrity, and foreign keys. Relational Language- Relational Algebra, Tuple and Domain Relational Calculus, SQL, DDL and DML, embedded SQL. Introduction and basic concepts of PL/SQL. Query Processing and Optimization. Study of various open Source and Commercialized Database Management Systems-MySQL, PostgreSQL, Oracle, DB2, SQL Server

UNIT III:

Database Design- Dependencies and Normal forms, Functional Dependencies, 1NF, 2NF, 3NF, and BCNF. Higher Normal Forms-4NF and 5NF. Transaction Management: ACID properties, Serializability, Concurrency Control, Database recovery management. Data Storage and Indexes, Hashing Techniques.

UNIT IV:

Advanced Topics- CAP Theorem, Data Security, Object Oriented Database, Web Database, Distributed Database, Data Warehousing, and Mining. NOSql, MongoDB: Introduction, History of MongoDB, Installation and configuration. Key Features. Core servers & tools. Basic commands. Queries & Indexes.

Text Books:

- 1. Silberschatz, A., Korth, Henry F., and Sudharshan, S., Database System Concepts, 5th Edition, Tata McGraw Hill, 2016.
- 2. Elmasri, Ramez and Navathe, Shamkant B., Fundamentals of Database Systems 7th Edition, Pearson, 2015.

Reference Books:

1. Date, C. J, Kannan, A. and Swamynathan, S., An Introduction to Database Systems, 8th edition, Pearson Education, 2012.

J. D. Ullman, Principles of Database Systems, 2nd Ed., Galgotia Publications, 1999.
 Vipin C. Desai, An Introduction to Database Systems, West Publishing Co.

Prof. Ajay S. Singholi Professor In-charge, USAR Guru Gobind Singh Indraprastha University

Approved by BoS of USAR: 1/08/22, Approved by AC sub-committee Applicable from Batch Admitted in Academic Session 2021-22 Onwards